Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.20.492815

ABSTRACT

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC) 1 . Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogs, including remdesivir 2 . Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogs must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogs compete, has not been discerned in detail. Here, we use cryo-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart ATP 3,4 . Our results elucidate the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN, an enigmatic catalytic domain essential for viral propagation 5 . The NiRAN selectively binds GTP, strengthening proposals for the role of this domain in the formation of the 5’ RNA cap 6 .

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.07.479493

ABSTRACT

In vitro selection of remdesivir-resistant SARS-CoV-2 revealed the emergence of a V166L substitution, located outside of the polymerase active site of the nsp12 protein, after 9 passages. V166L remained the only nsp12 substitution after 17 passages at a final concentration of 10 M RDV, conferring a 2.3-fold increase in EC50. When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to RDV resistance.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.09.479840

ABSTRACT

Genetic variation of SARS-CoV-2 has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern or interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV, VEKLURY ® ) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein ELISA and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with EC 50 values 0.31 to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC 50 values ranging from 0.15 to 2.3-fold of the observed EC 50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.


Subject(s)
COVID-19 , Adenomatous Polyposis Coli
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.08.447516

ABSTRACT

Using available cryo-EM and x-ray crystal structures of the nonstructural proteins that are responsible for SARS-CoV-2 viral RNA replication and transcription, we have constructed an atomistic model of how the proteins assemble into a functioning superstructure. Our principal finding is that the complex is hexameric, centered around nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10) 2 , where nsp14 is seen to undergo a large conformational change between its two domains. This conformational change facilitates binding of six nsp12/nsp7/(nsp8) 2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Two of the six polymerase subunits are each proposed to carry dimers of nsp13, while two others are proposed to carry monomers. The polymerase subunits that coordinate nsp13 dimers also bind the nucleocapsid, which positions the 5’-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analyzing the path of the viral RNA indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping (the nsp12 NiRAN and the nsp14 and nsp16 methyltransferases). The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping and the role of the endonuclease. It provides a platform to guide biochemical and structural research to address the stoichiometric and spatial configuration of the replication-transcription complex. Author Summary The replication of the coronavirus genome and the synthesis of subgenomic mRNA is a complex process involving multiple viral proteins. Despite a fairly complete structural picture of the individual proteins that are believed to coalesce into a larger replication-transcription complex, there is no clear model of how these proteins interact. Here we present the first detailed atomistic model of a complete replication-transcription complex for SARS-CoV-2, made up of the non-structural proteins nsp7-nsp16, as well as the nucleocapsid. Forming a large, hexameric superstructure centered around nsp15, the model provides new perspective on the function of its individual components, including the exonuclease, the endonuclease, the NiRAN site, the helicase, the multiple zinc fingers, and the nucleocapsid. It offers a cohesive view of replication, proofreading, template switching and mRNA capping, which should serve as a guide for future experimental exploration.

5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.19.423600

ABSTRACT

Remdesivir (RDV) exhibits potent antiviral activity against SARS-CoV-2 and is currently the only drug approved for the treatment of COVID-19. However, little is currently known about the potential for pre-existing resistance to RDV and the possibility of SARS-CoV-2 genetic diversification that might impact RDV efficacy as the virus continue to spread globally. In this study, > 90,000 SARS-CoV-2 sequences from globally circulating clinical isolates and >300 from mink isolates collected through early September 2020 were analyzed for genetic diversity in the RNA replication complex (nsp7, nsp8, nsp10, nsp12, nsp13, and nsp14) with a focus on the RNA-dependent RNA polymerase (nsp12), the molecular target of RDV. Overall, low genetic variation was observed with only 12 amino acid substitutions present in the entire RNA replication complex in [≥]0.5% of analyzed sequences with the highest overall frequency (82.2%) observed for nsp12 P323L that consistently increased over time. Low sequence variation in the RNA replication complex was also observed among the mink isolates. Importantly, the coronavirus Nsp12 mutations previously selected in vitro in the presence of RDV were identified in only 2 isolates (0.002%) within all the analyzed sequences. In addition, among the sequence variants observed in [≥]0.5% clinical isolates, including P323L, none were located near the established polymerase active site or sites critical for the RDV mechanism of inhibition. In summary, the low diversity and high genetic stability of the RNA replication complex observed over time predicts a minimal global risk of pre-existing SARS-CoV-2 resistance to RDV.


Subject(s)
COVID-19
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3588829

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 µM). Weaker activity was observed in Vero E6 cells (EC50 = 1.65 µM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.Funding: This project was funded in part by the National Institute of Allergy and Infectious Diseases, National 284 Institutes of Health, Department of Health and Human Service awards: 1U19AI142759 (Antiviral Drug 285 Discovery and Development Center awarded to M.R.D. and R.S.B); 5R01AI132178 awarded to T.P.S. 286 and R.S.B.; and 5R01AI108197 awarded to M.R.D. and R.S.B. D.R.M was funded by T32 AI007151 and 287 a Burroughs Wellcome Fund Postdoctoral Enrichment Program Award. The Marsico Lung Institute 288 Tissue Procurement and Cell Culture Core is supported by NIH grant DK065988 and Cystic Fibrosis 289 Foundation grant BOUCHE15RO. We also are grateful for support from the Dolly Parton COVID-19 290 Research Fund, the VUMC Office of Research, and the Elizabeth B. Lamb Center for Pediatric Research 291 at Vanderbilt University. Conflict of Interest: The authors affiliated with Gilead Sciences, Inc. are employees of the company and own company stock. The other authors have no conflict of interest to report.Ethical Approval: Human tracheobronchial epithelial cells provided by Dr. Scott Randell were obtained from airway specimens resected from patients undergoing surgery under University of North Carolina Institutional Review Board-approved protocols (#03-1396) by the Cystic Fibrosis Center Tissue Culture Core.


Subject(s)
Severe Acute Respiratory Syndrome , Communicable Diseases , Cystic Fibrosis , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL